3,901 research outputs found

    More hidden heavy quarkonium molecules and their discovery decay modes

    Full text link
    To validate the molecular description of the observed Zb(10610)/Zb(10650)Z_b(10610)/Z_b(10650) and Zc(3900)/Zc(4025)Z_c(3900)/Z_c(4025), it is valuable to investigate their counterparts, denoted as ZQV(β€²)Z_{QV}^{(\prime)} in this work, and the corresponding decay modes. In this work, we present an analysis of the ZQV(β€²)Z_{QV}^{(\prime)} using flavor symmetry. We also use the effective Lagrangian based on the heavy quark symmetry to explore the rescattering mechanism and calculate the partial widths for the isospin conserved channels ZQV(β€²)β†’Ξ·QVZ_{QV}^{(\prime)} \to \eta_Q V. The predicted partial widths are of an order of MeV for ZQVβ†’Ξ·QVZ_{QV} \to \eta_Q V, which correspond to branching ratios of the order of 10βˆ’2∼10βˆ’110^{-2}\sim 10^{-1}. For ZQVβ€²β†’Ξ·QVZ_{QV}^\prime \to \eta_Q V, the partial widths are a few hundreds of keV and the branching ratios are about 10βˆ’310^{-3}. Future experimental measurements can test our predictions on the partial widths and thus examine the molecule description of heavy quarkoniumlike exotic states.Comment: 11 pages, 2 figures; accepted by Phys. Rev.

    Strong decays of the XYZXYZ states

    Full text link
    Through the spin rearrangement scheme in the heavy quark limit, we have performed a comprehensive investigation of the decay pattern and production mechanism of the hidden beauty di-meson states, which are either composed of a P-wave bottom meson and an S-wave bottom meson or two S-wave bottom mesons. We further extend the corresponding formula to discuss the decay behavior of some charmonium-like states by combining the experimental information with our numerical results. The typical ratios presented in this work can be measured by future experiments like BESIII, Belle, LHCb and the forthcoming BelleII, which shall provide important clues to the inner structures of the exotic states.Comment: 21pages, 12table

    Top quark pair production at small transverse momentum in hadronic collisions

    Full text link
    We investigate the transverse momentum resummation for top quark pair production at hadron colliders using the soft-collinear effective theory and the heavy-quark effective theory. We derive the factorization formula for ttˉt\bar{t} production at small pair transverse momentum, and show in detail the procedure for calculating the key ingredient of the factorization formula: the next-to-leading order soft functions. We compare our numerical results with experimental data and find that they are consistent within theoretical and experimental uncertainties. To verify the correctness of our resummation formula, we expand it to the next-to-leading order and the next-to-next-to-leading order, and compare those expressions with the exact fixed-order results numerically. Finally, using the results of transverse momentum resummation, we discuss the transverse-momentum-dependent forward-backward asymmetry at the Tevatron.Comment: 39 pages, 7 figures, 1 table; final version in PR
    • …
    corecore